

What is Software and how is it built?

Gathering requirements for Software
projects is about asking questions,
potentially thousands of questions, about
what the user requires. I distinctly
remember the first time I was given the
task of gathering software requirements.
I started my career in IT as a
programmer, which meant a Systems
Analyst fed me specifications, I created
code based on those specifications and
passed it back to him. I had no direct
contact with the user. I then received a
promotion to a Programmer Analyst.
That meant I could talk to people.

One of my first tasks upon receiving that
promotion was to gather the
requirements for a new Order Tracking
system. It was assumed at that time that
gathering requirements was an unskilled
job. “How difficult can it be to find out
what someone wants? All you have to
do is ask”. I scheduled an interview
with the user and asked one questions:
“What do you want?”. They gave me
lots of information which I dutifully
wrote down and took back to my office.
I wrote some code based on the
information I received and presented it
to the user. I got lots of “Where did you
come up with this?” “That’s not what I
asked for!” “That’s not what I want!”.
So where did I go wrong.

Software is a product to be created like
any other product. If you are building
software for yourself, sure, build
whatever you want. However, if you are
building it for someone else, you need to
find out what that person or persons
want. That is what we mean by
Gathering Requirements.

Let’s say we want a house built for us.
We are going to hire someone to design
it based on our requirements and then
build it. So we go and talk to an
architect. That architect will not say to
us “What do you want?”. He will ask
many questions based on the context of
houses. “How many bedrooms do you
want?” “How many floors?” “How
many bathrooms?” “Do you want a
fireplace?” “Gas or wood burning?” “Do
you do a lot of entertaining?” “Yes, so
you’ll want a large dining room?” “Two
or 3 car garage?” “Attached or detached”
etc. etc. etc. That is because he knows
what a house is, in the minutest of detail,
and how one is built. He has “Domain
Knowledge”.

In order for us to know what questions to
ask our clients, we must also possess this
Domain Knowledge about Software.

We can understand a house, or plane, or
ship etc. because they are physical. We
can ask questions based on our inherent
understanding of 3 dimensions and our
senses. If I want someone to build a
wall for me I can describe my
requirements in terms of length, width,
height, location, colour, materials
weight, etc. All things we are familiar
with. Software is different. It has no
length, weight, height, colour etc.
Except for the interfaces, it is, for all
intents and purposes, invisible. For
decades we had this problem. Since the
product we need to build is invisible,
what questions do we ask to find out our
client’s needs? If we had a very clear
picture of what Software was and how it
was built, we could then ask specific

questions about it in context, just like
our architect.

I remember distinctly the first time I was
introduced to the idea of what software
really was. A way of thinking about it,
describing it, that was clear and precise.
It was a revelation, an epiphany... the
lightbulb went on.

When you think of a house, or a bridge,
or a wall... you think of its
characteristics. Software also consists of
characteristics, but it consists of
something else, distinctly different. It
has behaviour. It is not static! It is
dynamic! It performs! It does stuff!

So that means when we describe
software we need to describe what it is,
meaning its characteristics, but also what
it can do, meaning its functionality.

Software does one, and only one, thing.
It responds! It does not initiate anything
by itself. It responds to events. Our
most fundamental description of
software can then become “What events
can occur that our software should
respond to?”. If we can come up with
that, then we have come a long ways
towards understanding software.

The fundamental events

There are 3 basic types of events in life;
the decision, the circumstance and the
temporal.

People decide things every day.
Customers decide to buy products.
Managers decide to hire, promote or fire
employees. Employees decide to quit.
Managers decide to change the prices of
products, etc. The list is possibly
endless. If the response to that event

involves software then the event, as well
as the response, is also in scope.

Things also happen that are not
decisions, they just happen. The phone
rings. A box arrives on our desk. We
need to respond to that event as well.
We need to “answer the phone” or
“receive inventory”.

Things also happen periodically. The
15th and last day of the month we pay
people. The 20th we pay approved
vendor invoices. The 10th we pay
salesman commissions. Three O’clock
every Wednesday afternoon we get the
mail. Lots of things we do based on
time.

So, at the most fundamental level, if we
want to describe a piece of software, it
would answer the question “What events
does it respond to?”.

That of course is not sufficient to allow
us to create the software. We must also
answer the question “How must it
respond to those events?”
Now we’re getting somewhere. If we
could find out from our business what
events can occur that the software must
respond to and how must it respond, then
we could relay that information to our
developers and they could build the
software according to the user
requirements.

